Алгебра

Основні правила комбінаторики

Комбінаторика – розділ математики, присвячений розв’язуванню задач вибору та розташування елементів деякої скінченної множини відповідно до заданих правил.

Правило суми: Якщо елемент деякої множини А можна вибрати m способами, а елемент множини В – n способами, то елемент із множини А або ж із множини В можна вибрати m + n способами.

Приклад. У місті N є два університети – політехнічний і економічний. Абітурієнту подобаються три факультети в політехнічному університеті і два – в економічному. Скільки можливостей має абітурієнт для вступу в університет?

Розв’язання. Позначимо буквою А множину факультетів, які обрав абітурієнт в полі технічному університеті, а буквою В – в економічному. Тоді А = {т, n, k}, В = {p, s}. Оскільки ці множини не мають спільних елементів, то загалом абітурієнт має 3 + 2 = 5 можливостей вступати до університету. 

Правило добутку: Якщо перший компонент пари можна вибрати т способами, а дру­гий – п способами, то таку пару можна вибрати тп способами.

Приклад. Від пункту А до пункту В ведуть три стежки, а від В до С – дві. Скількома маршрутами можна пройти від пункту А до пункту С?

Розв’язання. Щоб пройти від пункту А до пункту В, треба вибра­ти одну з трьох стежок: 1, 2 або 3. Після того слід вибрати одну з двох інших стежок: 4 чи 5.

Усього від пункту А до пункту С ведуть 6 маршрутів, бо 3 ∙ 2 = 6.

 Добуток усіх натуральних чисел від 1 до n називають n-факторіалом і позначають п!

Приклад. Скільки різних по­їздів можна скласти з 6 вагонів, якщо кожний з вагонів можна по­ставити на будь-якому місці?

Розв’язання. Першим можна поставити будь-який із 6 вагонів. Маємо 6 виборів. Другий вагон можна вибрати з решти 5 вагонів. Тому за правилом множення два перших вагони можна вибрати 6 · 5 способами. Третій вагон можна вибрати з 4 вагонів, що залишились. Тому три перших вагони можна вибрати 6 · 5 · 4 способами. Продовжуючи подібні міркування, приходимо до відповіді: усього можна скласти 6 · 5 · 4 · 3 · 2 · 1 = 720 різних поїздів.

Запам’ятайте: 1! = 1 і 0! = 1.

 

Немає коментарів:

Дописати коментар

  Математичні симуляції  PhET Дроби: Вступ Будуємо дроби Рівність дробів Мішані дроби